
Int. J. Human–Computer Studies 148 (2021) 102577

Available online 4 January 2021
1071-5819/© 2020 Elsevier Ltd. All rights reserved.

Exploring the first experiences of computer programming of older people
with low levels of formal education: A participant observational case study

Sergio Sayago a,*, Ángel Bergantiños b

a Universitat de Lleida, Spain
b Universitat de Barcelona, Spain

A R T I C L E I N F O

Keywords:
Computer programming
Older people
Participant observation
Textual and visual programming languages
Social inclusion

A B S T R A C T

Computer programming is widely regarded as a key skill in the 21st century. Yet, and despite a growing aging
population and interest in promoting computer programming for all, research on this topic with older people
(60+) is scant in the Human-Computer Interaction literature. This paper presents a qualitative case study aimed
to explore the first experiences of computer programming of a group of older active computer users with low
levels of educational attainment (i.e., primary school / K-12). Over a 6-month period, we provided a hands-on
introduction to several textual and visual programming languages and environments to (N = 29) older and
adult people in three courses in an adult educational center. We reveal and explain relevant factors that shape,
and help us understand, the participants’ computer programming learning experiences, including their moti-
vations, difficulties, and identity, along with strategies that hindered and fostered empowerment. Implications
for research and design are discussed.

1. Introduction

In recent years, there has been a surge of public interest in promoting
computer programming for all. Examples are free massive online pro-
gramming courses (e.g. Coursera, edX), along with initiatives such as
Code Week1 and All You Need is Code2 in Europe, and the Hour of Code3 in
the U.S. This public interest in fostering programming for all is due in
part to the fact that programming, i.e., the process of writing computer
programs, is widely regarded as a key skill in the 21st century (Rushk-
off, 2010; Kafai and Burke, 2014; Vee, 2017), and programmers as the
“lifeblood of our technical society” (Halvorson, 2020, p. 8). Another
significant push for programming for all comes from the maker move-
ment (Kafai and Burke, 2014).

This paper addresses computer programming with older people
(60+). Why is this issue important? Older adults represent a large and
fast-growing fraction of the global population. By programming, they
can create or modify software and tangible applications that are related
to their interests and needs (Guo, 2017). This can result in more
accessible and useful technologies for a growing aging population, as
most of today’s technologies have been designed without considering

older people (Newell, 2011). Programming can also be a gateway for
older people, especially those who do not have the knowledge or re-
sources needed (e.g., low literacy levels, living in working-class neigh-
borhoods that lack relevant resources), to participate in the maker
movement, which has been criticized for its lack of demographic di-
versity (Meissner et al., 2017; Baudisch and Mueller, 2017; Tanenbaum
et al., 2013). Being able to read and comprehend code also provides
older people with an opportunity to better understand, question, and
participate in today’s society, as programming is shaping it (Kitchen and
Dogde, 2011) and looking more and more like a new literacy (Vee,
2017).

This paper presents a case study aimed to explore the first experi-
ences of computer programming of a group of older active computer
users with low levels of formal education (i.e., primary school / K-12).
We focus on this profile of older people because our long-term research
goal is to empower (i.e., to extend their abilities and develop new skills
(Schneider et al., 2018)) those older adults who are running, or run the
risk of, lagging behind from computing revolutions. Older people in
higher socioeconomic groups and well-educated use digital technologies
at higher rates than those in lower groups (PEW, 2014; Schehl et al.,

* Corresponding author.
E-mail address: sergio.sayago@udl.cat (S. Sayago).

1 Code Week. Retrieved October 13, 2020 from http://codeweek.eu/
2 All you need is code. Retrieved October 13, 2020 from http://www.allyouneediscode.eu/
3 https://code.org/ Retrieved October 13, 2020.

Contents lists available at ScienceDirect

International Journal of Human - Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs

https://doi.org/10.1016/j.ijhcs.2020.102577
Received 14 July 2020; Received in revised form 19 October 2020; Accepted 8 December 2020

mailto:sergio.sayago@udl.cat
http://codeweek.eu/
http://www.allyouneediscode.eu/
https://code.org/
www.sciencedirect.com/science/journal/10715819
https://www.elsevier.com/locate/ijhcs
https://doi.org/10.1016/j.ijhcs.2020.102577
https://doi.org/10.1016/j.ijhcs.2020.102577
https://doi.org/10.1016/j.ijhcs.2020.102577
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2020.102577&domain=pdf

International Journal of Human - Computer Studies 148 (2021) 102577

2

2019). Whilst research on computer programming is vast, previous
works addressing this topic with older people are scant – see Section 2.
Against this background, we decided to carry out an exploratory case
study, based on participant observation (DeWalt and DeWalt, 2011),
intended to (a) discover and examine in-context the first encounters
with programming of older people with low levels of formal education,
by providing them with a hands-on introduction to different program-
ming languages and environments, and (b) draw from their experiences
a number of relevant factors that shape, and account for, their rela-
tionship with programming, and that can inform future studies.

The study took the form of three courses conducted over a 6-month
period in an adult educational center in a working-class neighborhood of
Barcelona (Spain), wherein older and adult people participate. All the
courses in this center are open to all its participants. Consequently,
although our study focused on older people, we opened it to adult
people, and doing so helped us enrich the study, as we discuss later. In
our study participated older (70+: 5; 61–70: 11), middle-age4 (40–60:
7), and young (18–39: 6) non-English adult speakers with several cul-
tural backgrounds (Spain, Eastern Europe, Latin America, Asia and
Arabia), low levels of educational attainment (approx. 80% finished
primary school, and 20% secondary school), and previous experience of
using computers. None had previous experience of programming. We
provided them with a practical introduction to textual and visual pro-
gramming languages and environments, i.e. Java, Python, Processing,
Scratch, and App Inventor. The choice of the languages was motivated
by the goals of the study and their potential usefulness for the partici-
pants. We discuss this issue further in Section 3.

While this paper reports a single case study, which was conducted
with a specific profile of participants, we believe its findings have
generalizable research value to the field of Human-Computer Interac-
tion (HCI). We discuss their motivations for exploring computer pro-
gramming, which include feeling more socially included and competent,
and learning more about how computers work. We also show that their
most important difficulties in learning programming were mostly
cognitive-related, and indicate that these difficulties were remarkably
similar among the participants, regardless of their age or cultural
backgrounds. We also show that the participants finished the courses by
being able to read, understand, and write simple programs, challenging
stereotyped (mostly negative) views of older people and digital tech-
nologies. This paper makes the following contributions:

• An exploratory case study of the first experiences of computer pro-
gramming of a group of older and adult active computers users with
low levels of formal education and several cultural backgrounds

• Relevant factors that shape, and help us understand, the computer
programming learning experiences of a group of older and adult
active computer users with low levels of formal education, such as
their motivations, difficulties, and identity

• Implications for research and design, especially related to under-
standing better older people as technology users, co-creating useful,
user and learner-centered instructional materials, and designing
better (more inclusive) tools for programming.

2. Related work

In 2.1 we present a progression in HCI research with older people,
from consumers to producers of digital content, which is relevant for this
study. In 2.2 we review previous works on computer programming with
older people.

2.1. From consumers to producers of digital content

aging has recently become a significant research area in HCI (Vines
et al., 2015; Sayago, 2019). Much of this research regards older people
as consumers of digital content (Guo, 2017). Yet, there is a progression
in research that positions them as producers of digital content and ar-
tefacts. We are witnessing older people who are blogging (Brewer and
Piper, 2016), making custom electronics (Jelen et al., 2019), wearing
smartwatches and generating quantified self-data (Rosales et al., 2017),
creating digital games (Sayago et al., 2016), producing digital videos
(Ferreira et al., 2017), and engaged in crowd work (Brewer et al., 2016).
This transition from consuming to generating digital content and arte-
facts is of direct relevance to our work, as older people can program
entirely new software applications on their own by writing code (Guo,
2017). This transition can also contribute to debunk widespread (and
mostly negative) stereotypes of older people and their interaction with
digital technologies (Durick et al., 2013). This paper aims to extend the
progression that positions older people as producers of digital content by
adding further and new evidence to it, by addressing computer
programming.

2.2. Computer programming with older people

Computer programming attracts a lot of research. Previous works
have developed programming languages and environments that lower
the barriers to programming (Kelleher and Pausch, 2005; Sim and Lau,
2019). Other studies have examined error and notification messages
(Becker et al., 2019), debugging strategies (Murphy et al., 2008), emo-
tions (Kinnunen and Simon, 2010), practices of programming
(Bergström and Blackwell, 2016), and programming patterns in
block-based and text-based programming languages (Weintrop and
Holbert, 2017). Previous research has also put forward pedagogical
strategies for teaching children to code (Bers, 2019), examined the dif-
ficulties non-English speaking people experience while learning pro-
gramming (Guo, 2018; Pal, 2016; Dasgupta and Mako, 2017; Vogel,
2020), analyzed the benefits of learning a visual programming language
over a traditional text-based language (Noone and Mooney, 2018;
Weintrop and Wilensky, 2017), reported on what programming lan-
guages developers use and why (Pang et al., 2018), and examined cre-
ative coding (Li et al., 2020). Despite a growing aging population, very
little of this research has been conducted with, or has considered, older
people.

From the title and abstract of the papers published in the three most
recent proceedings (Malizia et al., 2019; Barbosa et al., 2017; Díaz et al.,
2015) of End-User Development5 and the IEEE Symposium on Visual Lan-
guages and Human Centric Computing (VL/HCC, 2018–2020),6 none of
them addressed older people. We also conducted keyword searches (see
Table 1) in the ACM Digital Library (DL), SCOPUS, and IEEE Xplore. We
selected these three databases because they are particularly relevant for
this paper, covering a broad range of studies in the fields of Aging, HCI,
and Computer Science. To keep our search as broad as possible, we
applied our search string to the fields title, abstract, and keywords in
SCOPUS, anywhere in the ACM DL, and all metadata in IEEE Xplore. We
searched for papers written in English and published in peer-reviewed
scientific journals and conference proceedings within the last ten years
(in the period from 2010 to 2020). We excluded papers that did not
explicitly deal with (a) computer programming, and (b) older people
(60+). A total of 360 papers were found in the ACM DL, 293 in SCOPUS,

4 According to Encyclopedia Britannica (https://www.britannica.com
/science/middle-age), middle age is generally defined as being between the
ages of 40 and 60.

5 whose goal is to empower end-users who are not necessarily experts in
software development to create or modify their software to address their own
specific needs

6 whose mission is to support the design, theory, application, and evaluation
of computing technologies and languages for programming, modeling, and
communicating, which are easier to learn, use, and understand by people

S. Sayago and Á. Bergantiños

https://www.britannica.com/science/middle-age
https://www.britannica.com/science/middle-age

International Journal of Human - Computer Studies 148 (2021) 102577

3

and 8 in IEEE Xplore. Two papers met the eligibility criteria.
(Guo, 2017) is “the first known study of older adults learning com-

puter programming” (p. 7070). It is based on an online survey on the
motivations, learning practices, and frustrations of approximately 500
English-speaking older people (over 90% were Managers, Professionals
or Technicians), from 52 different countries, who were learning pro-
gramming by using an educational website. The results show that
making up for missed learning opportunities during youth, keeping their
brains challenged, and implementing a specific hobby project idea were
the respondents’ top three motivations for learning programming. The
respondents also reported using free online resources, mostly MOOCs,
blogs, and web tutorials. The three most important reported learning
frustrations were bad pedagogy, cognitive impairments, and no human
contact with tutors or peers.

(Ohashi et al., 2020) reports the curriculum of a programming course
case study of senior citizens in Japan. The ultimate goal was to train
older people as lecturers of computer programming in elementary
schools. Two courses were conducted (5, 2-h long sessions a week) with
30 older people. Scratch was chosen as a programming language, and
teaching materials used for elementary school pupils were revised and
reused. Based on questionnaires, most of the participants’ motivation
was to be able to use computer or programming, and to communicate
with children or grandchildren. In terms of considerations to instruction
design for senior citizens, scheduling and pacing, and diverse learning
styles were found to be key.

This paper extends these two studies as follows. Firstly, while the
sample of older adults who participated in (Guo, 2017) was skewed
towards highly educated, technology-literate, self-motivated, and
English-speaking people, the older adults who participated in this study
are non-English speaking people with low levels of education and
different cultural backgrounds. The profile of participants in (Ohashi
et al., 2020) consisted of older Japanese people. Secondly, this paper
addresses several visual and textual programming languages and envi-
ronments, compiler error and notification messages, differences and
similarities in programming learning between younger and older people,
and instructional approaches, in addition to motivation and learning
frustrations, by combining first-hand observations with conversations
over a 6-month period.

3. The case study

In order to achieve one of the objectives of the study, i.e., to discover
and examine in-context first experiences of programming, we deemed it
important to capture how these experiences are created and experienced
by the study’s participants. To this end, we conducted participant
observation (DeWalt and DeWalt, 2011), which is a method to collect
data in naturalistic settings by carrying out first-hand observations of,
and taking part in, the activities of the people being studied. We con-
ducted the study in Àgora (AG), an adult educational center in Barce-
lona, Spain.

AG has been operating for almost 40 years. Since the 1980s, AG has
been fostering the social and digital inclusion of people who are, or
might be, excluded from the Catalan society, such as immigrants and
older people. To do so, AG adopts an intergenerational dialogical
learning approach (Sánchez Aroca, 1999), which empowers the students
– using AG terminology, participants – to decide what they want to learn
in free courses. Their decision is usually based on the needs they aspire
to fulfill in their everyday lives. Participants regard digital technologies
as instrumental in fostering inclusion. Courses on computing and the
Internet take place daily and are mostly attended by older participants.
Volunteers, who are mostly older people that became fairly independent
computer users by enrolling in courses in AG, help to run the courses.
Other volunteers are Bachelors, Masters, PhD students, and postdocs
conducting academic fieldwork activities.

The case study took the form of in-person courses on programming
(Fig. 1). The courses (including the curriculum and materials) were
designed and conducted by the authors of this paper. As fieldworkers are
key research instruments in participant observation (and ethnography)
(Coffey, 1999), and part of the social world they study (Hammersley and
Atkinson, 2007), we disclose key aspects of our identity related to this
study in an attempt to clarify who the we this paper mentions is and how
that influences the research (Schlesinger et al., 2017). Both of us have a
background in Computer Science (CS). One of us (the first author) holds
a PhD in CS and HCI, has previous experience of teaching computers and
the Internet to older people, and programming to first and second-year
students of CS. The second author was an undergraduate student (of CS
and Mathematics) at the time of doing this study.

We provided the participants with a hands-on introduction to Java,
Python, Processing, Scratch, and App Inventor. As stated in (Weintrop
and Wilensky, 2015b), a longstanding question faced by computer sci-
ence educators is what language to use to introduce learners to pro-
gramming. In our study we took a number of factors into consideration
(Gupta, 2004) – in addition to, perhaps inevitably, our own personal
experience of programming - to choose the aforementioned program-
ming languages and environments. The factors were the exploratory
goal of the study, the profile of the participants, and the potential use-
fulness of the programming languages and environments for them.

Although Java, Python, and Processing programs can be quite
complex to understand and create for novices, especially for those who
do not either speak or read English, we chose Java and Python because

Table 1
Keyword search in ACM DL, SCOPUS, and IEEE Xplore.

In ACM DL:
• 290 Results for: [All: "senior"] AND [All: "computer programming"] AND

[Publication Date: (01/01/2010 TO 12/31/2020)]
• 35 Results for: [All: "elderly"] AND [All: "computer programming"] AND

[Publication Date: (01/01/2010 TO 12/31/2020)]
• 11 Results for: [All: "older people"] AND [All: "computer programming"] AND

[Publication Date: (01/01/2010 TO 12/31/2020)]
• 24 Results for: [All: "older adults"] AND [All: "computer programming"] AND

[Publication Date: (01/01/2010 TO 12/31/2020)]
In SCOPUS:
• 115 documents for (TITLE-ABS-KEY ("senior") AND TITLE-ABS-KEY ("computer

programming")) AND PUBYEAR > 2009
• 114 documents for (TITLE-ABS-KEY ("elderly") AND TITLE-ABS-KEY ("computer

programming")) AND PUBYEAR > 2009
• 21 documents for (TITLE-ABS-KEY ("older people") AND TITLE-ABS-KEY ("com-

puter programming")) AND PUBYEAR > 2009
• 43 documents for (TITLE-ABS-KEY ("older adults") AND TITLE-ABS-KEY ("computer

programming")) AND PUBYEAR > 2009
In IEEE Xplore:
• 6 results for (("All Metadata":"senior") AND "All Metadata":"computer

programming”), 2010–2020
• 1 result for (("All Metadata":"elderly") AND "All Metadata":"computer

programming"), 2010–2020
• No results found for (("All Metadata":"older people") AND "All Metadata":"computer

programming"), 2010–2020
• 1 result for (("All Metadata":"older adults") AND "All Metadata":"computer

programming"), 2010–2020

Fig. 1. Participants in a course.

S. Sayago and Á. Bergantiños

International Journal of Human - Computer Studies 148 (2021) 102577

4

both are very popular programming languages (TIOBE, 2020) and
highly demanded in the job market.7 This could help our participants to
(i) access a lot of online resources and communities, and (ii) provide
them with employment opportunities, especially the younger ones. Java
is connected (via Android) with mobile apps and smartphones, which
are popular devices amongst older people who are online (Rosales et al.,
2017). Yet, we did not focus on Object Oriented Programming in our
study, as we discuss in 3.1 and 3.2. Python allows us to teach pro-
gramming concepts in an easy to understand manner to young students
(Noone and Mooney, 2018). Based on our own experience of program-
ming in Python, this programming language could also be a viable
choice when it comes to introducing older and adult people with low
levels of formal education to computer programming, as it might have
low barriers to startup (e.g., easier syntax than Java). With respect to
Processing, we used it in our study because of its connection with cre-
ative coding, which could appeal to our participants, due to its visual
and artistic aspect, and motivate them to exploit their creativity. Pro-
cessing is a language for learning how to code within the context of the
visual arts and is being used by artists, designers, researchers, and
hobbyists for learning and prototyping.8

While Java, Python, and Processing are text-based programming
languages, we explored block-based programming languages and envi-
ronments, namely Scratch and App Inventor, because block-based pro-
gramming languages “are increasingly becoming the way that novices
are being introduced to the practice of programming and the field of
computer science more broadly” (Weintrop and Holbert, 2017, p. 633).
Programming in these environments takes the form of dragging blocks
into a composition area and snapping them together to form scripts, thus
helping to alleviate difficulties with syntax. Scratch is a very popular
block-based programming language, with an active online community
around it (Resnick et al., 2009; Kafai and Burke, 2014), and can foster
intergenerational activities (e.g., older people and grandchildren). App
Inventor is based on Scratch and connected to mobile app development
(Wolber et al., 2014; Ortega et al., 2017). Scratch and Python are also
connected to the maker movement.9

In 3.1 we present the approach followed in the courses for intro-
ducing the participants to programming. Afterwards, we provide an
overview of the courses. In 3.3 we present the profile of the participants,
and recruitment method. Lastly, we present the data gathering and
analysis approach adopted in the study, and ethical aspects.

3.1. The approach

In addition to the programming language, previous works have
highlighted that how programming is introduced and taught matters
(Cunningham, 2018; Mohorovičić et al., 2011). In our courses, it was
important that a user-centered and tested framework for technology
learning of older adults (Sayago et al., 2013), and the principles of the
learner-centered design process (Guzdial, 2016) were utilized. By
drawing on a four-year ethnographic study of ICT learning (program-
ming was not included) with 420 older people in an adult educational
center in Barcelona and a computer clubhouse in Dundee (Scotland),
(Sayago et al., 2013) makes explicit two key and distinguishing aspects
of older adult ICT learning: (i) life-centered (e.g., strong connection with
their lives – what they consider they want to need to know) and (ii) life
experience (e.g., lessons learned over a person’s lifetime). Both aspects
make their learning experience different from that of children (Knowles
et al., 2005). (Guzdial, 2016) is a learner-centered design approach
intended to create computing education for a broad audience. Central to

this approach is that programming is not just for the professional soft-
ware developer, and respect for the learner, i.e., we need “to construct
learning opportunities for who the learner is and wants to be, not for the
expert that we computer scientists want them to be” (p. 16). The prin-
ciples of learner-centered design include understanding where the
learners are starting from, what they want to do, and where they are
likely to have trouble, as well as expecting the learners to change and
using a language they understand.

We found it difficult to anticipate key aspects of the principles pro-
posed by (Sayago et al., 2013) and (Guzdial, 2016), especially in the first
course, such as the relationship between programming and our partici-
pants’ life experiences, interests and needs, the language we had to use,
and the type of authentic programming learning activities we should
design. We did not have previous experience of teaching programming
to this user group. We did not find empirical evidence from our review of
previous and related works either. We did find approaches, adopted with
other groups of novice programmers (e.g., high school students), that
zero in on very specific issues, such as metacognition (Loksa et al.,
2016). Albeit important, we decided to adopt a more open-ended
approach to achieve the objectives of the study. Thus, we decided to
fall back on our experience of teaching programming in the traditional
STEM perspective. Although this way of teaching programming has
drawbacks, mostly due to its syntactic approach (Cunningham, 2018)
and little attention to cognitive aspects of programming (Loksa et al.,
2016), it is fairly general and consolidated (Bers, 2019). As opposed to
(Ohashi et al., 2020), we did not consider adapting materials used for
elementary school pupils, as doing so could have been paternalistic and
strengthened already negative views of older people (Riddell and Wat-
son, 2014). Instead, we followed tips for teaching programming “at any
level and to any audience” (Brown and Wilson, 2018, p.1), such as live
coding, making predictions (i.e., ask students what they think a program
would do), and pair programming, along with instructional materials
developed by ourselves, and online tutorials and guides freely available
online (e.g., tutorialspoint.com).

After explaining the basic structure of a program and having the
participants write (or create) the typical Hello World program (in the
different programming languages of the courses), we addressed impor-
tant elements of procedural programming, such as variables, operators,
iterative, and conditional statements. In the case of Java, we did so
within the main method of a program consisting of one class. We ran
practical sessions, as programming skills are acquired and improved
with practice. In the sessions, we conducted live coding, to show the
participants how a program can be created step-by-step, and asked the
participants to guess the output of a given program, to improve their
programming reading skills. The sessions were in Spanish, as all our
participants read, understand, and speak in this language. Some par-
ticipants, especially those adults from Eastern Europe, Latin America,
Asia and Arabia, had difficulties communicating in Catalan. We trans-
lated keywords that programming languages such as Java, Python, and
Processing use in English into Spanish in the sessions (e.g., print /
imprimir, for / para, if / si) so that participants got used to, and learned,
these new words for them. The participants did a number of traditional
programming exercises in STEM (e.g., writing a program to check if a
number is odd or even) by programming in pairs and solving Parsons
Problems, where chunks of code have to be placed in the correct order,
to help them learn further about the program flow. We also provided
participants with programs that had gaps (e.g., a function to complete)
for them to fill in, so that they could concentrate on specific aspects,
avoiding more complex ones (e.g., input / output), and, at the same
time, look at and become more familiar with the code of a program.

3.2. The courses

We conducted three courses (A, B, and C). Table 1 provides an
overview of the activities conducted in them. Each course had the same
duration (3 months) and format (weekly sessions of 2-h long) as the

7 https://www.computer.org/publications/tech-news/trends/programmin
g-languages-you-should-learn-in-2020 Retrieved October 13, 2020

8 https://processing.org/ Retrieved October 13, 2020
9 http://www.makerspaceforeducation.com/coding.html Retrieved October

13, 2020

S. Sayago and Á. Bergantiños

https://www.computer.org/publications/tech-news/trends/programming-languages-you-should-learn-in-2020
https://www.computer.org/publications/tech-news/trends/programming-languages-you-should-learn-in-2020
https://processing.org/
http://www.makerspaceforeducation.com/coding.html

International Journal of Human - Computer Studies 148 (2021) 102577

5

other courses on computers in AG. Course B and C were conducted
during the same months, in morning and afternoon sessions, respec-
tively. Conversations with members of the board of AG revealed that
these were the first courses on computer programming in the center.

Course A was devoted to Java. Course A was the first course we
conducted in the study and we decided to focus on a single and textual
programming language. We also considered Python. Yet, since Java and
Python are both in English, our participants are not English speakers and
had no previous experience of programming, and we had more experi-
ence of programming with Java at the moment of running this course,
we focused on it. Participants wrote a number of basic and traditional
programs in the STEM context, such as counting the number of vowels in
a word, using variables, loops (e.g. for and while), conditionals, and
input / output, in a single main program. Participants also created an
interactive program with a Graphical User Interface (GUI) in Swing with
the multiplication tables. Participants considered that a visual program
such as this could be useful for them (to brush up on their mathematical
knowledge and play games with their grandchildren). Rather than
writing the program from scratch, we provided them with a pre-written
program with gaps they had to fill in. The program had the code in
Swing of the GUI and the code to complete was related to the generation
of the multiplication tables, thus avoiding OOP skills. Participants could
change the look-and-feel of the GUI if they wished through Netbeans, the
IDE (Integrated Development Environment) used in the course. At the
end of the course, we introduced participants to Scratch to get their
opinion on a different, block-based, programming language, an help us
inform the design of the following courses.

Course A informed the design of Course B and C. Course A threw
(some) light on the relationship between the key aspects of (Sayago
et al., 2013) and (Guzdial, 2016), and programming with our partici-
pants. As we discuss further, and contextualize, in the results section, we
identified programming exercises that participants were willing to
write, such as calculating the number of hours a person has lived, and
those that had a connection with their lives, i.e., programs that they
could show to and use with others at home or in the center, such as
online games and mobile apps. Traditional STEM exercises were not
very motivating for them, perhaps, due to the mathematical aspect and
little connection with their interests. We also realized that devoting
three months to a single programming language was difficult to keep
participants motivated, as they struggled to write programs indepen-
dently and made numerous errors, leading to feelings of incompetence
and social exclusion. Thus, we considered that diversity could be an
alternative to have them more engaged. Course A also confirmed that
live coding, providing the participants with programs with gaps they
had to fill in, and pair programming, were useful and engaging ways to
introduce them to programming and explore their programming
learning experiences.

Taking the lessons learned from Course A into account, Course B and
C provided participants with a hands-on and basic introduction to Py-
thon, Scratch, App Inventor, and Processing. Three sessions were
devoted to each programming language (see Table 2). The number of the
programming languages might be judged as too much or distracting.
Also, three sessions is not enough to learn a programming language. Yet,
given that the aim of this study was exploratory, and taking into account
the lessons learned from Course A, we considered that it was worthwhile
to have the participants read and write basic programs in different
programming languages, and that three sessions could allow us to do so.
As Table 2 depicts, participants wrote, in some cases, programs with a
certain level of complexity. Figs. 2–4 show a sample of computer pro-
grams written during the courses by the participants.

While Java, Python, and Processing are in English, Scratch and App
Inventor can be used in other languages than English. We set Scratch and
App Inventor to Spanish. We did not use them in English because the
participants’ level of English was not good enough to use these tools in
that language. We considered using Scratch and App Inventor in
Catalan. However, some of the participants had problems

communicating in Catalan. Also, App Inventor was not available in
Catalan at the time of doing the study. Hence, as we wanted to use both
tools and run inclusive sessions, we decided to use Scratch and App
Inventor in Spanish. Still, some participants, those who speak both
Spanish and Catalan, did use Scratch in Catalan, as a personal
preference.

3.3. The participants: Recruitment and profile

We recruited the participants by following the procedure of AG. We
prepared a short description (in the local language) of the courses, which
were announced on the school’s bulletin board, along with the other
courses in the center. As other public centers in the local area provided
official programming courses (with a certificate of completion), we
deemed it important to highlight the explorative, research-oriented, free
of charge, and hands-on introduction to computer programming fea-
tures in ours. The (translated) text of one of the courses was:

“Are you an active computer user interested in writing your own pro-
grams? Have you heard about programming and do not have a clue about
what it means? There is a new course in the school, “programming 3.0′′. A
researcher and lecturer in CS at a public university will run it. The course will
provide you with a hands-on introduction to popular programming languages.
You will also contribute to research with your opinions and experiences. Are

Table 2
Overview of the courses: programming languages, environments, and activities.

Programming languages /
environments

Overview of the activities

Java The first four weeks were devoted to an introduction
to the NetBeans IDE (Integrated Development
Environment), key programming aspects, such as
conditional and iterative statements, and to do
practical exercises in the STEM tradition. The
remainder of the sessions (8) was devoted to the
program of multiplication tables, in which
participants had to write the code (i.e., iterative
statements – for / while - and multiplications –
number * index) to calculate and generate the tables.

Python The first session was devoted to Jupyter Notebook,
how to install it at home, and the basics of Python.
The other two sessions were devoted to writing
programs related to aspects in which the participants
were interested, such as calculating the age or
figuring out the zodiac sign of a person given his or
her date of birth (without considering issues such as
leap years).

Scratch Pong game. We provided the participants with the
structure of the game and asked them to write the
code that was missing in three parts: scoring,
movement of the ball, and movement of the pales. The
first session was devoted to creating an account in
Scratch, introducing the online programming
environment, and the Pong game. The other two
sessions were devoted to writing the missing parts of
the code provided. All participants finished the game.

App Inventor The three sessions of App Inventor were devoted to
the development of a simple app that allowed
participants to convert Euros to another currency.
Participants brought their smartphones, installed a
QR reader into them during the sessions, and
interacted with the app in their own phones. All
participants finished the app.

Processing In the first session, we provided the participants with
the structure of a program that allowed them to draw
basic geometric figures (e.g. circle, square) in a
canvas. We also introduced them to the Processing
language and IDE. In the remainder of the sessions, we
encouraged the participants to ‘show us their
creativity’, by completing the code to modify the
figures and create new, more complex ones.
Participants modified the program to draw, for
example, the skeleton of a person and a chair.

S. Sayago and Á. Bergantiños

International Journal of Human - Computer Studies 148 (2021) 102577

6

you going to miss it? Sign up in the secretariat!”
From the announced list of courses with short description, partici-

pants interested in the course/s sign up for them in the secretariat,
wherein they are informed about the course and the person who orga-
nizes it. The inclusion / exclusion criteria of our courses were the same
criteria as those followed in the other courses on computing in AG: if the
participant considers that he or she has the level of experience with
computers to follow the course, and there are places available, they take
part in it. Their participation is always voluntary.

Our conversations with the participants (N = 29; Men: 18. Women:
11) indicated that they were active computer users, non-English
speaking people, had low levels of educational attainment (approx.
80% finished primary school, and 20% secondary school), and were
original from Spain (24), Eastern Europe (2), Latin America (1), Asia (1)
and Arabia (1). All of them owned smartphones and were active
WhatsApp users. None of them reported having previous experience of
programming. Table 2 shows the distribution of participants in the
courses. No participant took more than one course. Two-thirds of the
participants (19) attended all sessions (12 for each course). The partic-
ipants spent in each class between 1.5 h (due to other commitments,
such as taking care of their children, grandchildren, or having an
appointment with their GP) and 2 h (Table 3).

3.4. Data gathering and analysis

We jotted notes of our observations and conversations immediately
after the sessions (36), which were so active that hindered in situ note-
taking. The first author did the note-taking in course A, while the second
author did so in courses B and C, as we could not participate together in
all the sessions. The first author participated in some sessions of courses
B and C. To strengthen this aspect of data gathering (i.e., avoid possible
biases in writing fieldnotes post hoc), we met regularly (once a week) to
share experiences and lessons learned from the sessions, discuss progress
and different perspectives, and deal with unexpected issues (e.g., diffi-
culties installing software or Internet connectivity). In our office, we
wrote descriptive notes in a shared, online (text) document. We did not
use video cameras in any course, as doing so could have been highly
disruptive. However, we did take pictures (Figs. 1–4 of this paper) by
using our smartphones, which is a technology our participants already
brought to, and used, in the courses.

We analyzed the notes by conducting thematic analysis (TA), in
particular, reflexive thematic analysis. Given that TA is as an umbrella
term (Braun and Clarke, 2019), with three different schools (coding
reliability, codebook, and reflexive TA), we deem it important to clarify
which one we adopted, and why, as each school has its strengths and
limitations. We choose reflexive TA because, in our opinion, it fits well
with participant observation (DeWalt and DeWalt, 2011) and case
studies (Lazar et al., 2017), as it emphasizes meaning as contextual or
situated, and researcher subjectivity as a resource (Braun and Clarke,
2019). In familiarization (phase 1), we read the notes, at the end of the
courses, to look for possibilities, connections and potential interesting
ideas. In phase 2, we generated codes by conducting a systematic
identification of meaning through the notes. We constructed the main
themes in phase 3 by collating codes into potential themes that were
related to the objective of the study. We wrote memos to revise and

Fig. 2. Program in Python that calculates the zodiac sign of a person given her
year of birth.

Fig. 3. Jupyter Notebook with a ‘Hello World’ program.

Fig. 4. Code (in Spanish) in App Inventor of an app with a button.

Table 3
Profile of participants in the courses.

Course # participants Age range Men/ Women

Course A 6 70+: 3; 60–70: 3 4 men
2 women

Course B 12 70+: 1; 60–70: 4; 50–60: 5;
40–50: 0; 30–40: 0; <30: 2

6 men
6 women

Course C 11 70+: 1; 60–70: 4; 50–60: 0;
40–50: 2; 30–40: 2; <30: 2

8 men
3 women

S. Sayago and Á. Bergantiños

International Journal of Human - Computer Studies 148 (2021) 102577

7

re-define themes (phase 4), and shared the results with colleagues to
gather their feedback and external perspective (phase 5). We wrote the
manuscript in phase 6. We conducted between 3 and 5 iterations in
phases 3 to 6 until the themes could tell a compelling interpretation of
the data.

Each of us conducted the analytic process outlined above indepen-
dently to get two perspectives of the programming experiences we had
witnessed in the courses. The notes of Course A were analyzed by the
first author, as the second one had not participated in it in any way,
while the notes of the other courses were analyzed by both of us. In
Phase 5, we put together and discussed the results, and shared the
memos among some of our colleagues, who had not participated in the
courses. In keeping with reflexive TA, we did not aim for ‘consensus
coding’ (Braun and Clarke, 2019). Instead, we aimed for a credible and
rigorous interpretation of our participants’ experiences of programming.
The analysis finished when the results achieved that goal, in the authors’
opinion.

3.5. Ethical aspects

Ethical approval was granted by the Council Center, the decision-
making body of AG. Participants granted us written consent to use ex-
tracts of our notes in publications related to the study, and pictures of
themselves in the courses, and use this material freely and without any
restriction in publications related to the courses.

4. Findings

The analysis outlined in Section 3 yielded five main themes, which
we use to organize and present the results. We use extracts taken from
the fieldnotes to include the participants’ voices in the results. These
extracts have been translated into English by the authors. Participants
are identified by codes, e.g. [P12, AGE]. We include brief analytic
commentary sections to reflect on and discuss key aspects of the results.
To simplify, the voices of the authors are presented in the first person of
the plural (i.e., we).

4.1. Motivations for programming: learning about computers, feeling
more socially included and competent, and creating something useful

Our participants’ main motivations for exploring computer pro-
gramming were to: know more about how computers work, e.g. “Great! I
always wanted to learn how these things work and are made” [P1, 65] feel
more socially included and competent, as the following conversation
between two participants we overheard before a session was due to
begin show

“When you go to a computer shop, and they see you (and older person)
coming… you know, you feel like fish out of water. When you grow old, you
learn that people treat you differently, because of your age” [P12, 68] (…)

The same when you’re an immigrant. It’s sad, but this is the real world…
This is something you learn over your lifetime, this is NOT only about age”
[P4, 40] (…)

By learning programming, we could speak a language techy people know
about and make better, more informed decisions. To speak with property – I
mean, showing that you know what you are talking about - and not like a
fool” [P12, 68] create useful or interesting applications for them and
others, e.g. “the program you showed us turns someone’s age into days! It’s
really amazing. Will we write it? I could create something nice for my son, he
is learning basic math now”[P4, 40]

4.1.1. Commentary
Computational literacy, one of the least popular motives for learning

to program of the respondents in (Guo, 2017), was our participants’
main motivation for learning computer programming, along with social
inclusion. This difference might be due in part to their very different
profiles.

Using computer programming as a vehicle for improving (perceived)
social inclusion reinforces the idea of ‘coding is connecting’ in pro-
gramming with children (Kafai and Burke, 2014). As opposed to them,
for our participants connecting does not mean to ‘be seen’; it means to
‘feel more socially included’.

It might be surprising that finding a job was not listed as one of the
motivations, especially for the younger participants. In light of the re-
sults presented below, this might have been due to the difficulties they
experienced in their initial encounters with computer programming.

4.2. Lots of difficulties, mostly cognitive-related, with important meanings
behind, related to the identity of the participants: struggle for
independence, social inclusion, and feelings of incompetence

“I’m sweating. Geez! This is really annoying. It says there is an error, on
that line, but I don’t see it. Where is the damn error? This programming thing
is very picky. If you fail to write a parenthesis, or miss a semicolon some-
where, the program falls apart. It’s quite sad to realize that you are able to use
your smartphone, edit pictures and watch movies online on your own, and
then see that you’re completely useless at programming”. [P1, 65]

Participants paid a lot of attention to what we said and the programs
we wrote on the whiteboard. We explained to them the meaning of
keywords that programming languages use in English (e.g., for / para,
while / mientras) in Spanish. They wrote extensive paper-based notes, as
“otherwise I won’t remember. Where did you say the icon to run the program
is? What does this word mean? Oh, I see… I need to write that down too. My
notes are my memory“ [P6, 70]. We told them that they could read the
documents with the instructions we had prepared for the courses
(mostly PowerPoint presentations), and that we used in the sessions.
Participants thanked us for preparing this material, which they checked
occasionally in the sessions. However, participants relied on interacting
with us and on their notes throughout the study. We also encouraged
them to check tutorials, code examples, and how-to guides online (e.g.,
(https://www.tutorialspoint.com/index.htm). They did try, but “this is
like reading Chinese to me. This is very advanced. We need something much
clearer, more guided and understandable. You see, my notes, I do understand
them. We can’t learn programming by reading tutorials. We need a teacher.”
[P13, 55]

Participants made errors in all the programming languages and
sessions. Our close interaction with them enabled us to realize that the
errors were mostly: syntactically based. This was especially significant
with Java, “If you miss the semi colon… kaput!” [P21, 50] Participants
made fewer errors with Python and Processing, “The colors help a lot. But
if you miss a parenthesis, or the next line is not indented…the program falls
apart! It’s very picky. This might be too much for us. We will never be like
others, who can do these things” [P3, 66] due to difficulties using the
mouse, especially older participants, struggled to move blocks in Scratch
and App Inventor, (see Fig. 4), “You don’t write, fair enough, but you’ve to
move this tiny block across the screen and put it in the right place, which isn’t
easy with old hands.” [P1, 65]

The messages / notifications of the compiler were of little use for
them. We observed that participants did not know how to solve the er-
rors by reading the compiler error messages, which they read carefully

This says that ‘computer’ does not exist. This can’t be true. I did write the
variable with the name ‘computer’ [P2, 40]

(Instructor) This message is telling you that the word ‘computer’ has been
misspelled. See, you missed the r here.

I see! The computer could have told me so!” [P2, 40]
The language of the message was not an issue. We observed that most

of them used online tools (i.e. Google Translate) to translate the mes-
sages – and websites - in English. The younger participants had already
developed this practice, while the older ones learned it from them in the
courses. Participants paid scant attention to visual marks (such as a
dotted or curved line in red) when there was an error, because of
practices they had developed with other tools:

(Instructor) You see, this text with this line here means that there is

S. Sayago and Á. Bergantiños

https://www.tutorialspoint.com/index.htm

International Journal of Human - Computer Studies 148 (2021) 102577

8

something wrong.
Oh, I see, I thought it was like Word, when you write a word that the

computer does not understand (like my first name) but that it is not wrong. I
ignore it.“ [P5, 60]

We observed that younger participants were ‘faster learners’ than the
older ones. They were able to correct syntax-based errors (e.g., a missing
semicolon) quicker. They also seemed to follow our instructions faster,
as we did not have to repeat ourselves as often as we did with the older
participants, ‘I’m sorry, but you will have to repeat this thing to me again.
This young boy might have got it, but I’m still figuring it out’. [P8, 67]

4.2.1. Commentary
Some of our participants’ difficulties, especially cognitive-related

ones, reinforce the results of (Guo, 2017), while others, such as those
in understanding what a compiler error message is really asking them to
do, were not reported in the two studies of programming and older
people identified in our literature review (Guo, 2017; Ohashi et al.,
2020). Most of the difficulties experienced by our participants and those
in (Guo, 2017) were cognitive-related. No vision-related barrier was
either observed or reported. This reinforces the relevance of cognition
over vision found in the interaction barriers experienced by older people
to use web technologies (Sayago and Blat, 2009) in computer pro-
gramming too.

Most of our participants’ learning difficulties might be due to a lack
of previous experience of programming. Yet, this does not mean that
they are not important, or that their importance is relative, as are just
typical strains all or most beginner programmers go through, and, with
experience, overcome, or get used to them. These learning difficulties
had a strong, negative impact on the participants’ struggle for inde-
pendence, social inclusion, and feelings of incompetence - (…) ‘this might
be too much for us. We will never be like others, who can do these things’. If
we take into account the profile of the participants, and the results
presented in 4.1, these three aspects are important parts of the partici-
pants’ identity. Comments such as “like fish out of water”, “not like a
fool”, and “we will never be like others”, indicate that the experiences of
the participants are often a product of the intersection (Schlesinger
et al., 2017) of (old) age, immigrant, and social exclusion / inclusion,
competence, and independence (i.e., not relying on anyone else). We
have shown how this identity determines what programming means for
the participants in Section 4.1 and in the relevance of the difficulties
they faced in this section. We discuss how this identity impacts on their
attitudes towards some programming environments and the way of
introducing these tools to them in Section 4.5.

Previous research has shown that one of the many challenges novice
programmers face from the time they write their first program are
syntax-based errors and inadequate compiler error messages (Kelleher
and Pausch, 2005; Becker et al., 2019). Our results reinforce this aspect
by showing that it is not just older people who experience these diffi-
culties, younger adults do too. Our results also add weight to the need for
making online content more inclusive and accessible (Yesilada and
Harper, 2019); in particular, online resources for learning programming,
which do not seem to have attracted much research attention in the web
accessibility community.10

Previous research has highlighted the linguistic demands of com-
puter programming for people new to English (Guo, 2018; Pal, 2016;
Dasgupta and Mako, 2017; Vogel, 2020). Most of these studies have
been conducted with young students, overlooking older people. Our
results show a number of linguistic demands in the programming ex-
periences of our participants. They took extensive notes, in which they
wrote down the meaning of keywords (in English) in programming that

were new for them. They also developed new practices, especially the
older ones, to translate and attempt to understand error messages in
English without relying on anyone else. This stresses the fact that “for CS
education to be for all, the field must also come to understand students’
language practices” (Vogel, 2020, p. 2). However, no participant com-
plained about English-only programming languages, as opposed to some
young students in (Vogel, 2020, p.266). This might be due to their
different profiles. Yet, participants acknowledged that the language
issue is a barrier, especially after using Scratch and App Inventor in
Spanish, as we discuss in Section 4.5.

Although older people are a very heterogeneous user group, due
mostly to aging, which, as well as being a biological attribute, in-
tertwines with a range of social dimensions (Barbosa and Vetere, 2019),
our results show that our participants, and those in (Guo, 2017), expe-
rienced a number of fairly similar programming learning difficulties,
regardless of their age. This suggests that older people might not be such
a heterogeneous group as far as their experiences of learning program-
ming are concerned.

Our older participants’ difficulties in moving blocks in Scratch and
App Inventor challenge a general perception that blocks-based pro-
gramming is easier for novice programmers (Weintrop and Wilensky,
2015). Older participants learning new practices from younger ones in
the sessions also challenges widespread stereotyped (mostly negative)
views of older people, such as being unable to learn (Durick et al., 2013).

4.3. From disempowerment to empowerment: connecting coding with their
lives, ‘ I feel I can do cool things now’

The first month of Course A was devoted to key programming as-
pects, such as conditional and iterative statements, and to do practical
exercises, such as writing programs printing in the console the multi-
plication table of a number introduced by the user. At the beginning of
the second month, the participants were much less interested and
enthusiastic than they were in the first sessions. They did not talk or
smile much. They seemed bored and to be running out of energy. They
did not see the connection with their interests and lives:

“I think we’ll never be able to learn the basics of programing. This is very
difficult. We’ll need ten more courses like this” [P6, 59]

“Yeah, I agree. I think we need to see more of a connection between the
course and our interests, things that are familiar to us, or our everyday
lives”. [P8, 67]

Participants nodded in agreement. We then asked them to tell us
things or ideas for programs in which they were interested. They sug-
gested quite a few ideas, ranging from writing a program for calculating
how many days and hours a person has lived – this was a particular
curiosity of one of the participants - to creating a program with which
they could learn something. From that session on, we re-designed the
sessions by conducting more authentic exercises for them and making
the connection between programs and their interests stronger.

In Course A, writing the code of the program that calculates how
many days and hours a person has lived gave rise to a sort of competition
amongst the participants. They wanted to see who had lived more hours!
Participants wrote this program in pairs and compared their answers.
They also solved Parsons Problems by figuring out the correct order of
some lines of the program (e.g., calculating the number of hours without
asking first the user to tell us his or her age) and predicting the results.
We wrote these problems on the whiteboard. They did so in pairs and
discussed enthusiastically the answers. Participants smiled and talked so
loud (unconsciously) that other older people and members of the staff of
AG came by to know ‘what was going on’. “This is the kind of programs
we want to code!” [P9, 59] “Absolutely, it’s such fun!” [P4, 40] Participants
had exactly the same difficulties as they did in previous sessions; yet,
they were more motivated to overcome them.

Participants in Courses B and C did not make, in our opinion, claims
related to disempowerment or strengthening the connection of the
programs made in the sessions with their lives or interests. Instead, our

10 We read the title and abstract of the papers published in the last five years
(2015-2020) in ACM-W4A and ACM-ASSETS, two key conferences in accessi-
bility, assistive technology, and digital inclusion. We did not find any paper
examining the accessibility of online resources for learning programming.

S. Sayago and Á. Bergantiños

International Journal of Human - Computer Studies 148 (2021) 102577

9

observations and conversations with them revealed that they had fun
playing the Pong game in Scratch, showed creativity when drawing
relatively complex pictures in Processing, and a lot of interest in creating
their own app with App Inventor

“When I was a kid, my dad told me that I should be as independent as
possible. Since then, I have attempted to do things on my own. This app is
really nice because I don’t need to ask for help. I showed it to some friends
yesterday and they couldn’t believe I had programmed it. I can’t believe I did
it either, I feel I can do cool things now!” [P15, 69]

4.3.1. Commentary
Both the principles of (Guzdial, 2016) and the core elements of older

people ICT learning of (Sayago et al., 2013) need a lot of detail when
putting them into practice. We found it difficult to anticipate what our
participants truly wanted to do and the fit of programming in their lives.
Consequently, Course A was a challenge. Yet, thanks to our participants,
we were able to re-design the course, adapting (Guzdial, 2016) and
(Sayago et al., 2013) to the study and the courses, the context, and our
participants. Doing so resulted in a shift from disempowerment to
empowerment, ‘I feel I can do cool things now’.

The efficacy of tips for teaching programming for all (Brown and
Wilson, 2018) with older people with low levels of educational attain-
ment was also uncertain, due to the scant research on computer pro-
gramming with this user group. Our results show that pair-based
programming, live coding, the Parsons Problems, authentic tasks, and
worked examples were effective and stimulating activities in the
courses.

4.4. Learning to read and write but not to think in abstract terms: ‘you
need a brilliant mind’

By the end of the courses, we noticed that our participants had
learned some elements of programming. They were able to write lines of
code, such as conditional statements, without checking their notes. They
also understood the logic / flow of the programs we provided them with,
i.e. they were able to read and understand them. Participants’ comments
confirmed our observations:

“I think we’ve finally understood why we’re doing these things in this
order. First you need to get the number, then obviously you need to do the
math, and you need to check if the number is greater than…got it! Everything
makes sense now! This is how calculators work, amazing! Learning all this
only took us three months, though (smiling)” [P7, 50].

“Yeah, do you remember I was rather pessimistic at the beginning of the
course? Now I feel more…you know, I feel I am closer to this world of
computers and new technologies. This programming is like a new language, it
can open you doors!” [P12, 68]

Yet, the majority of the participants found it very difficult to write a
program from scratch without our support, “We don’t know where to
begin. We are lost” [P4, 40]. The most difficult part for all the partici-
pants was abstraction when they were faced with a new problem, “We
have this exercise. We understand it. But how do we write a program that
solves it?” [P15, 69] “My friend, you need a brilliant mind to do so…and
it’s not mine” [P16, 45].

4.4.1. Commentary
Learning to program is hard. In light of the results presented above,

there are reasons to think that it might be even harder for non-English
speaking adult people with low levels of formal education, and impos-
sible for older people. Age-related changes in cognition make learning a
challenge in older adulthood (Sayago et al., 2013). Yet, the results show
that our participants actually learned some elements of computer pro-
gramming, i.e., to read and write basic code, and felt ‘closer to this world
of computers and new technologies’. This shows that the approach adopted
in the courses, and the determination of the participants, were instru-
mental in achieving, in light of the difficulties they experienced, a
noteworthy result. Yet, they were not able to program on their own. An

important challenge, and opportunity, is how to enable them to develop
the skills and abilities (e.g., abstraction) needed so that they can create
the programs they want to code on their own. To this end, the results
indicate that it is important to adopt a user and learner-centered design,
i.e., designing for the user and their task / learning goals (Guzdial, 2016;
Sayago et al., 2013), go beyond stereotyped views of older people and
digital technologies (Durick et al., 2013), and acknowledge that ‘pro-
fessional’ programmers (Halvorson, 2020), computational (data) sci-
entists (Rao et al., 2018), makers (Kafai and Burke, 2014), or visual
artists (Li et al., 2020), among others, are important, yet not the only,
identities worth supporting in computer programming for all.

4.5. To block or not to block? ‘Stupid or quite something!’ It comes down
to dealing with identity

In Course A, participants programmed in Java. At the end of the
course, we introduced them to Scratch (in Spanish) by asking them to try
out some of the programs in the ‘explore’ section of its website.11 The
objective was to gather their opinions about and attitudes towards it.
The faces of the participants spoke volumes of their opinions, which
highlighted social inclusion and fear of looking stupid:

“This might be interesting for children, but not for us. I’d say that we need
something simpler than the Net something… but this tool is…professional, I
mean, it seems serious stuff, authentic, if you know what I mean. The Scratch
one makes us seem stupid– which we are (smiling), in light of our countless
difficulties in programming! - with all these colors and things” [P5, 60]

Interestingly, this strong rejection did not happen in Course B or C,
where participants interacted with textual and block-based program-
ming languages. On the contrary, both Scratch and App Inventor were
regarded as fairly (i) easy to use, “It is easy to use in the sense that you don’t
write” [P17, 45], “I think I speak on behalf of all of us when I say that we
must admit that learning in Spanish (or Catalan), is a great thing. Pro-
gramming is hard, and programming in English is even harder, because you
don’t know the words” [P15, 69], and (ii) useful, “It allows you to create
apps for your phones. I mean, this is complex stuff that we can do by moving
blocks. That’s quite something!” [P18, 63]

4.5.1. Commentary
A recent (2018) systematic review of programming with young stu-

dents points out that “it is clear that visual programming languages
present many benefits over traditional text-based programming lan-
guages (emphasis ours)” (Noone and Mooney, 2018). Our results present
a different perspective. On the one hand, having introduced Scratch near
the end of Course A, when participants had already interacted with a
tool that was perceived to be for ‘professionals’, determined to a great
extent their refusal. On the other hand, when participants experienced a
number of different programming languages, Scratch was not rejected.
This shows that how and when visual programming languages are
introduced in courses with a certain profile of participants, who are
often regarded as ‘the others’ in society (Riddell and Watson, 2014),
matters, and that the presumed benefits of block-based programming
might not always be so clear.

We do not consider that the language issue had a strong impact on
the participants’ perspective of Scratch. As stated above, participants
did not complain about programming languages or environments being
in English-only or in other languages, although they admitted, as one
might expect, that Spanish was easier for them than English. The reasons
for setting Scratch in Catalan were related to personal preferences, and
this resonates with some of the reasons for young students to set Scratch
in different languages (Vogel, 2020). From the reactions of the partici-
pants, the refusal stemmed from a clash with their identity in the
courses. After having spent 3 months in a course programming with a
tool targeted at professional software development, the visually

11 https://scratch.mit.edu/ Retrieved October 13, 2020

S. Sayago and Á. Bergantiños

https://scratch.mit.edu/

International Journal of Human - Computer Studies 148 (2021) 102577

10

appealing nature of Scratch made the process of learning programming
appear toy-like and inauthentic (DiSalvo, 2014). This was at odds with
what the participants are, or aspire to be (and to be regarded by others):
socially included and competent citizens. This strong rejection did not
happen in Courses B and C because the participants were introduced to
different programming realities and tools.

5. Some implications

As stated in the Introduction, one of the objectives of this exploratory
study is to inform future studies. To this end, we present next a number
of implications that can be drawn from the results. These implications
are related to understanding better older people as technology users, co-
creating useful instructional materials, and designing better (more in-
clusive) tools for programming.

5.1. For better understanding older people as technology users

Prior works have explored differences and similarities in technology
use by older and younger people, e.g. (Trewin et al., 2012; Kurniawan
et al., 2019). The overall objective is to better understand older people
as technology users, as older people are not well understood yet
(Sayago, 2019). By working with older and younger adults in the study,
we are able to address (partially) the question of how different older and
younger people are as far as their programming learning experiences are
concerned.

Syntax and run-time errors are two of the most important difficulties
in learning programming by young novice programmers (Becker et al.,
2019). These difficulties were also very important for our participants,
regardless of their age, and those who participated in (Guo, 2017).
Although programming has traditionally been regarded as a logical and
rational activity, prior works have shown that the emotional component
is very important in learning computer programming amongst students
(Lishinski et al., 2017; Kinnunen and Simon, 2010). The emotional
component of programming did not receive much research attention in
(Guo, 2017; Ohashi et al., 2020). Our results, however, highlight how
emotional learning programming was for all our participants. Con-
necting coding with their lives and interests, whatever these might be,
from brushing up on multiplication tables to creating an app that con-
verts Euros to another currency, was instrumental in empowering our
participants. In keeping with previous research (Trewin et al., 2012;
Kurniawan et al., 2019), the main difference between younger and older
participants in our study was that the former were ‘faster learners’ than
the latter. We did not witness any other remarkable differences among
our participants.

Taken together, these results suggest that older and younger people
are not so different in terms of their first experiences of programming
learning as they are in other contexts, such as work environments (Fisk
et al., 2009). This can be taken as an opportunity to design more in-
clusive experiences of programming learning, as we discuss further in
Section 5.3.

5.2. For co-creating useful, user and learner-centered instructional
materials in different languages and formats

Instructional materials, such as tutorials, code examples, videos, and
how-to guides, play an important role in programming initiatives (e.g.
Code Week, All You Need is Code, the Hour of Code), and in research (Pal
and Iyer, 2015), aimed at fostering computer programming for all.
However, the results show that some online materials were not useful
enough for our participants, while the notes they took in the courses was
their strategy for helping them remember and conduct tasks. This use-
fulness of their notes can be accounted for by the fact that instructions
for low literate people should be as close as possible actual instances of
the tasks (Medhi Thies, 2014). In this sense, turning their notes into
digital ones could help us create more useful online instructional

materials for this user group, and deal with linguistic demands (e.g.,
meaning of keywords and error messages in English) in a user,
learner-centered way. Literate programming, which combines code with
visualization and text in a single document, presents us with an inter-
esting opportunity to do so.

In addition to the participants’ own notes, Section 4.2 shows the
relevance of the instructional approach. Participants paid a lot of
attention to what we said and the programs we wrote on the whiteboard,
and pointed out that “we can’t learn programming by reading tutorials.
We need a teacher”. This suggests that the co-creation and use of video-
based instructional materials could empower older and adult people to
learn computer programming at their own pace. We did not explore it
because in our case study it made little sense, as it is difficult to conceive
of a group of older and adult people who attend physically to a course
watching a video in class rather than interacting with their course mates
and instructor. Yet, videos might be especially valuable for those who
find it difficult to attend physically to courses, due to, for instance, age-
related changes in mobility, situations of social distancing and isolation
(e.g. COVID-19) (Morrow-Howell et al., 2020), or a lack of programming
activities in their local area. Future research could explore the effec-
tiveness of classroom recorded video tutorials and screencasts (a type of
educational video that is created by recording the computer screen with
the activities of computer screen) in programming learning with older
and adult non-English speakers with low levels of formal education, and
in so doing extend previous research on this issue, conducted mostly
with young students (Pal, 2016; Dasgupta and Hill, 2017), making it
more intergenerational.

5.3. For designing better tools for programming: avoid ‘othering’ them and
aim for the tasks they want to do

In light of the reported learning frustrations of the respondents,
(Guo, 2017) addresses the important question of how to design better
programming tools for older people. This question is aligned with the
most widespread design approach in age-targeted learning program-
ming, wherein there is a tendency to design specific tools for particular
user groups (Kafai and Burke, 2014; Kelleher and Pausch, 2005), and in
HCI research with older people too (Sayago, 2019).

On the one hand, our results reinforce the need for better designs.
Our results challenge a general perception that block-based program-
ming is easier for novice programmers (Weintrop and Wilensky, 2015),
due to the participants’ (mostly older people) difficulties in dealing with
the mouse. Our results also show that error and notification messages
should be improved to prove more informative for our participants. As
opposed to (Denny et al., 2014), wherein it is argued that enhancing
error messages appears ineffectual because undergraduate students did
not read the messages, our participants did read them. Future studies
could explore the extent to which principles for designing error mes-
sages (Becker et al., 2019) apply to older and adult people with low
levels of formal education. Doing so could contribute to address a key,
and yet-to-be-addressed, question in research on programming errors:
what does a good programming error message look like? (Becker et al.,
2019) Our results also show that some design solutions adopted in
programming tools, such as highlighting incorrect code, clashed with
the practices our participants have developed as a result of using word
document editors. Alternative ways of bringing incorrect code to the
attention of the users (e.g., using audio feedback or altering the size of
the word or line with the code error) could be explored. Our results also
indicate that the emotional component of the programming experiences
of our participants was important, and designing more
emotional-sensitive programming tools could provide them with richer
programming experiences. Future research could explore the design of
programming tools that recognize the emotions of the programmers, or
make them more aware of their emotional statuses, and adapt the user
interface according to them.

One the other hand, our results do not support the idea of designing

S. Sayago and Á. Bergantiños

International Journal of Human - Computer Studies 148 (2021) 102577

11

tools specifically for older people. The (lack of) rejection of Scratch in
the courses indicates that more important than age was the identity of
our participants and how the tools and the way we introduced them
projected it. When Scratch was introduced after having used ordinary
tools, Scratch was rejected because it was perceived ‘not for them’.
However, when programming tools such as Jupyter Notebooks and
Netbeans, which could have also been regarded as ‘not for them’,
because these are used by people with a different profile (e.g., data
scientists and professional programmers), were introduced as tools that
people use to learn to program, and do their jobs, participants did not
reject them. Our participants struggle for independence and social in-
clusion. ‘Othering’ (Riddell and Watson, 2014) them, i.e. building spe-
cific tools for them, does not seem to be the best strategy for achieving
their goals. Instead, it should be possible to build programming envi-
ronments (and, perhaps, languages) for the tasks the participants want,
without "othering" them. For example, Weintrop et al. (2018) provide
empirical basis for the use of block-based programming, designed for
young novices, as an effective programming interface for the growing set
of applications and contexts where programming by non-experts (e.g.
adult novices engaged in industrial robot programming) might occur.

6. Limitations

A limitation of case studies is that their results as not so generalizable
as those gathered in other research methods (Lazar et al., 2017). The
findings of this case study, with a particular profile of older, and adult
people, might be even less generalizable. However, case studies are close
examinations that can be used to build understanding, present evidence
for the existence of certain behavior, or to provide insight that would
otherwise be difficult to gather. This case study has revealed and
explained the experiences of programming learning of a group of older
and adult people that are unlikely to be gathered by adopting other
methods, for instance, online surveys.

Our review of previous and related works on computer programming
and older people focused on papers published in English and available at
three large academic databases. This can be seen as a limitation, as there
might be studies published in other languages, and in other academic
databases, that are not discussed in this paper. Future studies, perhaps
systematic reviews, could improve this issue.

We have discussed a number of methodological aspects throughout
Section 3. The challenge for us was how (and whether) programming
could be introduced to our participants, and their programming learning
experiences be explored. This challenge is visible in the mistakes we
made, especially in the first course, and the relevance of the lessons
learned from this first experience to carry out the other courses. We do
not claim that other approaches, programming languages or environ-
ments, would not have enabled us to explore the participants’ pro-
gramming learning. We do not claim that our own background has not
affected the study either. Yet, the approach we adopted enabled us to
provide new evidence of older people and computer programming, learn
how not to do things, identify relevant aspects of their first programming
experiences, conduct courses that were useful for the participants, and
draw some implications for research and design.

As stated in the introduction, the maker movement represents a
significant push in the coder movement. We considered exploring pro-
gramming and making by addressing Arduino, and kits such as Make-
yMakey12 with Scratch, in the courses. Yet, as the study developed, we
realized that exploring programming within the context of making with
our participants was another case study, and future research can explore
it.

We do not claim that other, or even different, implications can be
drawn from this study, as the readers can interpret the results in
different ways. We have discussed those implications that, in our view,

are important, grounded in the results, and can spark considerable
future research. The implications might also be regarded as general or
not too detailed. Since our aim was to spark future research, we decided
to highlight important issues and leave the details of their exploration
and implementation up to future studies.

We have not explored computer programming over time (i.e.,
extended periods of time). We decided to explore our participants’ first
experiences of programming because we considered that their initial
encounters could help us identify important issues in their relationship
with programming, and inform future research studies that can
strengthen it.

7. Conclusion

We began this paper by arguing that exploring computer program-
ming with older people is timely and worthwhile. However, the scant
research on this arena, along with widespread (and mostly) negative
stereotyped views of older people and digital technologies, can lead us to
believe that programming ‘is not for older people’, especially those with
low levels of formal education, and be skeptical about the feasibility of
exploring their programming experiences, and the contributions this
exploration, if possible at all, can make to Human-Computer Interaction.
Yet, this paper shows otherwise.

This paper has presented an exploratory case study aimed to examine
the computer programming learning experiences of a group of older and
adult active computers users with low levels of formal education and no
previous experience of programming. Over a 6-month period, we pro-
vided a hands-on introduction to several textual and visual program-
ming languages and environments to 29 participants in three courses,
wherein they were engaged in a number of different programming tasks,
some more engaging than others. By the end of the courses, participants
reported, and our observations confirmed, that they were able to learn,
understand, and write simple programs. Although this case study is not
enough to conclude that older people create more accessible and useful
technologies for themselves by learning programming, the results
challenge stereotypes, contribute to the progression that positions older
people as producers of digital content by adding new evidence to it, and
show that programming can empower them and strengthen their
perceived social inclusion.

Based on first-hand observations and conversations with the study’s
participants, this paper has shown relevant factors that shape, and help
us understand, their computer learning experiences. We have addressed
their motivations for learning programming, which include feeling more
socially included and competent, and learning more about how com-
puters work. We have shown the most important difficulties the par-
ticipants experienced, most of them cognitive-related. We have
identified the meaning these difficulties had for them in terms of their
identity, key aspirations and struggle for independence and social in-
clusion, and the role these aspects take on in how and why programming
languages and environments might be rejected or adopted. We have
highlighted the importance of connecting coding with their lives to
empower them. We have argued that older and younger participants
experienced remarkably similar first programming learning experiences.
These results deepen and widen current understanding of older people
and digital technologies, and research on computer programming for all,
as we have discussed throughout the paper.

Although the results of this case study might be difficult to gener-
alize, they contribute to Human-Computer Interaction. Given that pro-
gramming with older people is a mostly unexplored research arena, an
important objective of this case study was to inform future studies.
Consequently, the case study was explorative, and we have presented
implications for research and design that can be drawn from the results.
These implications address a range of aspects, from understanding better
older people as technology users, co-creating useful instructional ma-
terials, and designing better (more inclusive) tools for programming. As
we have discussed, these implications help us explore and understand 12 https://makeymakey.com/ Retrieved October 13, 2020

S. Sayago and Á. Bergantiños

https://makeymakey.com/

International Journal of Human - Computer Studies 148 (2021) 102577

12

better the relationship between older people and computer program-
ming, and digital technologies, in general. Future studies can confirm or
reject it.

In our future work, we aim to explore the comment made by one our
participants further, ‘This programming is like a new language’. In
particular, and inspired by Coding as Another Language (Bers, 2019), we
want to understand whether and how programming can be taught as
another language to older and adult people, and the effectiveness of
doing so. We plan to work together with the adult educators in AG and
other centers to design the activities. We also aim to explore literate
programming by having our participants to write their notes (in their
own language) in an online tool designed for the programming tasks
they want to do and use them in courses. We also aim to explore web
programming, e.g. Javascript (and HTML + CSS), as it can be of interest
to the participants (e.g., web apps), the design of more useful error and
notification messages, along with the emotional component of the pro-
gramming experiences of older and adult people, by conducting further
courses and running co-design sessions.

CRediT authorship contribution statement

Sergio Sayago: Conceptualization, Methodology, Formal analysis,
Investigation, Writing - original draft, Supervision, Funding acquisition.
Ángel Bergantiños: Conceptualization, Methodology, Software, Formal
analysis, Investigation, Writing - review & editing.

Declaration of Competing Interest

None

Acknowledgements

We are deeply thankful to AG participants, who helped us learn a lot
and carry out this study, and who were always willing to share their
programming experiences with us as well as allowing us to share them
with the rest of the world. Thanks to our colleagues Mireia Ribera and
Josep Blat for useful discussions, to Paula Forbes for improving our
English and our ideas. We also acknowledge the support from the Bar-
celona City Council through the AGORA 4.0 project. We also thank the
reviewers of this manuscript for their detailed, rigorous, and insightful
comments and suggestions.

References

Barbosa, S., Markopoulos, P., Pattern, F., Stumpf, S., Valtolina, S (Eds.), 2017. End-User
Development. Springer.

Barbosa Neves, B., Vetere, F., 2019. Ageing and Digital Technology Designing and
Evaluating Emerging Technologies For Older Adults. Springer, Berlin Heidelberg.

Baudisch, P., Mueller, S., 2017. Personal Fabrication. Found. TrendsⓇ Human–Computer
Interact 10, 165–293. https://doi.org/10.1561/1100000055.

Becker, B.A., Denny, P., Pettit, R., Bouchard, D., Bouvier, D.J., Harrington, B., Kamil, A.,
Karkare, A., McDonald, C., Osera, P.M., Pearce, J.L., Prather, J., 2019. Compiler
error messages considered unhelpful: the landscape of text-based programming error
message research. In: Annual Conference on Innovation and Technology in
Computer Science Education, ITiCSE, pp. 177–210. https://doi.org/10.1145/
3344429.3372508.

Bergström, I., Blackwell, A.F., 2016. The practices of programming. In: Proceedings of
IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC,
pp. 190–198. https://doi.org/10.1109/VLHCC.2016.7739684.

Bers, M.U., 2019. Coding as another language: a pedagogical approach for teaching
computer science in early childhood. J. Comput. Educ. 6, 499–528. https://doi.org/
10.1007/s40692-019-00147-3.

Braun, V., Clarke, V., 2019. Reflecting on reflexive thematic analysis. Qual. Res. Sport.
Exerc. Heal. 11, 589–597. https://doi.org/10.1080/2159676X.2019.1628806.

Brewer, R., Piper, A.M., 2016. Tell it like it really is”: a case of online content creation
and sharing among older adult bloggers. In: Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems. San Jose, California, USA, pp. 5529–5542.
https://doi.org/10.1145/2858036.2858379.

Brewer, R., Ringel, M., Piper, A., 2016. Why would anybody do this? older adults’
understanding of and experiences with crowd work. In: CHI.

Brown, N., Wilson, G., 2018. Ten quick tips for teaching programming. PLoS Comput.
Biol. 14 (4), 1–8.

Coffey, A., 1999. The Ethnographic Self. Fieldwork and the Representation of Identity.
SAGE Publications.

Cunningham, K., 2018. The novice programmer needs a plan. In: Proceedings of IEEE
Symposium on Visual Languages and Human-Centric Computing, VL/HCC. IEEE,
pp. 269–270. https://doi.org/10.1109/VLHCC.2018.8506481.

Dasgupta, S., Hill, B.M., 2017. Learning to code in localized programming languages. In:
L@S 2017 - Proceedings of the 4th (2017) ACM Conference on Learning at Scale,
pp. 33–39. https://doi.org/10.1145/3051457.3051464.

Denny, P., Luxton-Reilly, A., Carpenter, D., 2014. Enhancing syntax error messages
appears ineffectual. In: ITICSE 2014 - Proceedings of the 2014 Innovation and
Technology in Computer Science Education Conference, pp. 273–278. https://doi.
org/10.1145/2591708.2591748.

DeWalt, K., DeWalt, B., 2011. Participant observation. A guide For Fieldworkers.
Altamira Press, New York.

Díaz, P., Pipek, V., Ardito, C., Jensen, C., Aedo, I., Boden, A (Eds.), 2015. End-User
Development. Springer.

Disalvo, B., 2014. Graphical qualities of educational technology: using drag-and-drop
and text-based programs for introductory computer science. IEEE Comput. Graph.
Appl. 34, 12–15. https://doi.org/10.1109/MCG.2014.112.

Durick, J., Brereton, M., Vetere, F., Nansen, B., 2013. Dispelling ageing myths in
technology design,. In: OzCHI. Adelaide, Australia, pp. 467–476.

Ferreira, S.M., Sayago, S., Blat, J., 2017. Older people’s production and appropriation of
digital videos: an ethnographic study. Behav. Inf. Technol. 36 https://doi.org/
10.1080/0144929X.2016.1265150.

Fisk, A., Rogers, W., Charness, N., Czaja, S.J., Sharit, J. (Eds.), 2009. Designing For Older
Adults. Principles and Creative Human Factors Approaches. CRC Press.

Guo, P.J., 2018. Non-native english speakers learning computer programming: barriers,
desires, and design opportunities. In: CHI p. Paper 396.

Guo, P.J., 2017. Older adults learning computer programming: motivations, frustrations,
and design opportunities. In: Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, pp. 7070–7083. https://doi.org/10.1145/
3025453.3025945.

Gupta, D., 2004. What is a good first programming language? XRDS 10, 4 (August 2004),
7. https://doi.org/10.1145/1027313.1027320.

Guzdial, M., 2016. Learner-Centered Design of Computing Education. Morgan &
Claypool. Synthesis Lectures on Human-Centered Informatics.

Halvorson, M.J., 2020. Code Nation. Personal Computing and the Learning to Program
Movement in America. ACM Books.

Hammersley, M., Atkinson, P., 2007. Ethnography. Principles in Practice. Routedge,
London (UK).

Jelen, B., Monsey, S., Siek, K.A., 2019. Older adults as makers of custom electronics. In:
Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing
Systems - CHI ’19, pp. 1–6. https://doi.org/10.1145/3290607.3312755.

Kafai, Y.B., Burke, Q., 2014. Connected code. Why children Need to Learn Programming.
The MIT Press.

Kelleher, C., Pausch, R., 2005. Lowering the Barriers to Programming: a survey of
programming environments and languages for novice programmers. ACM Comput.
Surv. 37, 83–137. https://doi.org/10.1145/1089733.1089734.

Kinnunen, P., Simon, B., 2010. Experiencing programming assignments in CS1: the
emotional toll. In: ICER’10 - Proceedings of the International Computing Education
Research Workshop, pp. 77–85. https://doi.org/10.1145/1839594.1839609.

Kitchen, R., Dodge, M., 2011. Code / Space. Software and Everyday Life. The MIT Press.
Knowles, M., Holton, E., Swanson, R., 2005. The Adult learner. The definitive Classic in

Adult Education and Human Resource Development. Elsevier, Burlington, MA.
Kurniawan, S., Arch, A., Smith, S., 2019. Ageing and Older Adults. In: Yesilada, Y.,

Harper, S. (Eds.), Web Accessibility. A Foundation For Research. Springer Human-
Computer Interaction Series, p. 2019.

Lazar, J., Feng, J.H., Hochheiser, H., 2017. Research methods in human-computer
interaction. Res. Methods Human-Comput. Interact. https://doi.org/10.1016/b978-
044481862-1/50075-3.

Li, J., Brandt, J., Mech, R., Agrawala, M., Jacobs, J., 2020. Supporting visual artists in
programming through direct inspection and control of program execution. In: CHI.
Honolulu, pp. 1–12. https://doi.org/10.1145/3313831.3376765.

Lishinski, A., 2017. Students’ emotional reactions to programming projects in
introduction to programming: measurement approach and influence on learning
outcomes. In: Icer ’17. https://doi.org/10.475/123.

Loksa, D., Ko, A.J., Jernigan, W., Oleson, A., Mendez, C.J., Burnett, M.M., 2016.
Programming, problem solving, and self-awareness: effects of explicit guidance. In:
Conference on Human Factors in Computing Systems - Proceedings, pp. 1449–1461.
https://doi.org/10.1145/2858036.2858252.

Malizia, A., Valtolina, S., Morch, A., Serrano, A., Stratton, A., 2019. End-User
Development. Springer.

Medhi Thies, I., 2014. User interface design for low-literate and novice users: past,
present and future. found. TrendsⓇ Human–Comput. Interact. 8, 1–72. https://doi.
org/10.1561/1100000047.

Meissner, J.L., Vines, J., McLaughlin, J., Nappey, T., Maksimova, J., Wright, P., 2017.
Do-it-yourself empowerment as experienced by novice makers with disabilities. In:
Proceedings of the 2017 Conference on Designing Interactive Systems - DIS ’17.,
pp. 1053–1065. https://doi.org/10.1145/3064663.3064674.

Mohorovičić, S., Strčić, V., 2011. An overview of computer programming teaching
methods. In: Proc. 22nd Cent. Eur. Conf. Inf. Intell. Syst., pp. 47–52.

Morrow-Howell, N., Galucia, N., Swinford, E., 2020. Recovering from the COVID-19
pandemic: a focus on older adults. J Aging Soc Policy 32 (4–5), 526–535. https://
doi.org/10.1080/08959420.2020.1759758.

Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L., Zander, C., 2008.
Debugging: the good, the bad, and the quirky -a qualitative analysis of novices’

S. Sayago and Á. Bergantiños

http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0001
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0001
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0002
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0002
https://doi.org/10.1561/1100000055
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1109/VLHCC.2016.7739684
https://doi.org/10.1007/s40692-019-00147-3
https://doi.org/10.1007/s40692-019-00147-3
https://doi.org/10.1080/2159676X.2019.1628806
https://doi.org/10.1145/2858036.2858379
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0009
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0009
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0010
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0010
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0011
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0011
https://doi.org/10.1109/VLHCC.2018.8506481
https://doi.org/10.1145/3051457.3051464
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/2591708.2591748
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0015
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0015
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0016
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0016
https://doi.org/10.1109/MCG.2014.112
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0018
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0018
https://doi.org/10.1080/0144929X.2016.1265150
https://doi.org/10.1080/0144929X.2016.1265150
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0020
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0020
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0021
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0021
https://doi.org/10.1145/3025453.3025945
https://doi.org/10.1145/3025453.3025945
https://doi.org/10.1145/1027313.1027320
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0024
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0024
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0025
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0025
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0026
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0026
https://doi.org/10.1145/3290607.3312755
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0028
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0028
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1839594.1839609
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0031
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0032
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0032
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0033
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0033
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0033
https://doi.org/10.1016/b978-044481862-1/50075-3
https://doi.org/10.1016/b978-044481862-1/50075-3
https://doi.org/10.1145/3313831.3376765
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0036
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0036
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0036
https://doi.org/10.1145/2858036.2858252
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0038
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0038
https://doi.org/10.1561/1100000047
https://doi.org/10.1561/1100000047
https://doi.org/10.1145/3064663.3064674
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0041
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0041
https://doi.org/10.1080/08959420.2020.1759758
https://doi.org/10.1080/08959420.2020.1759758

International Journal of Human - Computer Studies 148 (2021) 102577

13

strategies. In: SIGCSE’08 - Proceedings of the 39th ACM Technical Symposium on
Computer Science Education, pp. 163–167. https://doi.org/10.1145/
1352135.1352191.

Newell, A.F., 2011. Design and the digital divide. insights from 40 years in computer
support for older and disabled people. Morgan & Claypool. Synthesis Lectures on
Assistive, Rehabilitative, and Health-Preserving Technologies.

Noone, M., Mooney, A., 2018. Visual and textual programming languages: a systematic
review of the literature. J. Comput. Educ. 5, 149–174. https://doi.org/10.1007/
s40692-018-0101-5.

Ohashi, Y., Yamachi, H., Murokoshi, Y., Kumeno, F., Tsujimura, Y., 2020. Development
of a programming course for senior citizens taught by senior citizens. In: ICIET.
Japan, pp. 18–23.

Ortega García, A., Ruiz-Martínez, A., Valencia-García, R., 2017. Using App Inventor for
creating apps to support m-learning experiences: a case study. Comput. Appl. Eng.
Educ. https://doi.org/10.1002/cae.21895.

Pal, Y., 2016. A Framework for Scaffolding to Teach Programming to Vernacular
Medium. Indian Institute of Technology Bombay.

Pal, Y., Iyer, S., 2015. Classroom versus screencast for native language learners: effect of
medium of instruction on knowledge of programming. In: Annual Conference on
Innovation and Technology in Computer Science Education, ITiCSE, pp. 290–295.
https://doi.org/10.1145/2729094.2742618.

Pang, A., Anslow, C., Noble, J., 2018. What programming languages do developers use? a
theory of static vs dynamic language choice. In: Proceedings of IEEE Symposium on
Visual Languages and Human-Centric Computing. VL/HCC. IEEE, pp. 239–247.
https://doi.org/10.1109/VLHCC.2018.8506534.

PEW. 2014. Older adults and technology use. Retrieved from https://www.pewresearch.
org/internet/2014/04/03/older-adults-and-technology-use/ July 13, 2020.

Rao, A., Bihani, A., Nair, M., 2018. Milo: a visual programming environment for data
science education. In: Proceedings of IEEE Symposium on Visual Languages and
Human-Centric Computing. VL/HCC. IEEE, pp. 211–215. https://doi.org/10.1109/
VLHCC.2018.8506504.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J.A.Y., Silverman, B., Kafai, Y., 2009. Scratch:
programming for all. Commun. ACM 52, 60–67. https://doi.org/10.1145/
1592761.1592779.

Riddell, S., Watson, N. (Eds.), 2014. Disability, Culture and Identity. Routledge.
Rosales, A., Fernández-ardèvol, M., Comunello, F., Mulargia, S., Ferran-ferrer, N., 2017.

Older people and smartwatches, initial experiences. El Profesional de La Información
26 (3), 457–463.

Rushkoff, D., 2010. Program Or Be programmed. Ten Commands For a Digital Age. OR
Books, New York.

Sánchez Aroca, M., 1999. La Verneda-Sant Martí: a school where people dare to dream.
Harv. Educ. Rev. 69 (3), 320–335.

Sayago, S. (Ed.), 2019. Perspectives On Human-Computer Interaction Research with
Older People. Springer Human-Computer Interaction Series.

Sayago, S., Blat, J., 2009. About the relevance of accessibility barriers in the everyday
interactions of older people with the web. In: W4A 2009 - International Cross
Disciplinary Conference on Web Accessibility.

Sayago, S., Forbes, P., Blat, J., 2013. Older people becoming successful ICT learners over
time: challenges and strategies through an ethnographical lens. Educ. Gerontol. 39
https://doi.org/10.1080/03601277.2012.703583.

Sayago, S., Rosales, A., Righi, V., Ferreira, S.M., Coleman, G.W., Blat, J., 2016. On the
conceptualization, design, and evaluation of appealing, meaningful, and playable

digital games for older people. Games Cult. 11 https://doi.org/10.1177/
1555412015597108.

Schehl, B., Leukel, J., Sugumaran, V., 2019. Understanding differentiated internet use in
older adults: a study of informational, social, and instrumental online activities.
Comput. Human Behav. 97, 222–230. https://doi.org/10.1016/j.chb.2019.03.031.

Schlesinger, A., Edwards, W.K., Grinter, R.E., 2017. Intersectional HCI: engaging identity
through gender, race, and class. In: Proc. 2017 CHI Conf. Hum. Factors Comput. Syst.
(CHI ’17), pp. 5412–5427. https://doi.org/10.1145/3025453.3025766.

Schneider, H., Eiband, M., Ullrich, D., Butz, A., 2018. Empowerment in HCI - a survey
and framework. In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems - CHI ’18, pp. 1–14. https://doi.org/10.1145/
3173574.3173818.

Sim, T.Y., Lau, S.L., 2019. Online tools to support novice programming: a systematic
review. In: 2018 IEEE Conference on E-Learning, e-Management and e-Services,
IC3e, 2018. IEEE, pp. 91–96. https://doi.org/10.1109/IC3e.2018.8632649.

Tanenbaum, J.G., Williams, A.M., Desjardins, A., Tanenbaum, K., 2013. Democratizing
technology: pleasure, utility and expressiveness in DIY and maker practice. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 2603–2612. https://doi.org/10.1145/2470654.2481360.

TIOBE. https://www.tiobe.com/tiobe-index/ Retrieved July 13, 2020.
Trewin, S., Richards, J.T., Hanson, V.L., Sloan, D., John, B.E., Swart, C., Thomas, J.C.,

2012. Understanding the role of age and fluid intelligence in information search. In:
ASSETS. Boulder, Colorado, pp. 119–126.

Vee, A., 2017. Coding literacy. How computing Programming is Changing Writing. The
MIT Press, Cambridge (USA).

Vines, J., Pritchard, G., Wright, P., Olivier, P., 2015. An age-old problem: examining the
discourses of ageing in HCI and strategies for future research. ACM Trans. Comput.
Interact. 22, 1–27.

Vogel, S., 2020. Translanguaging About, With, and Through Code and Computing:
Emergent Bi / Multilingual Middle Schoolers Forging Computational Literacies. The
City University of New York.

Weintrop, D., Wilensky, U., 2015. To block or not to block, that is the question: students’
perceptions of blocks-based programming. In: Proceedings of IDC 2015: The 14th
International Conference on Interaction Design and Children, pp. 199–208. https://
doi.org/10.1145/2771839.2771860.

Weintrop, D., Wilensky, U., 2015b. Using commutative assessments to compare
conceptual understanding in blocks-based and text-based programs. In: ICER 2015 -
Proceedings of the 2015 ACM Conference on International Computing Education
Research, pp. 101–110. https://doi.org/10.1145/2787622.2787721.

Weintrop, D., Afzal, A., Salac, J., Francis, P., Li, B., Shepherd, D.C., Franklin, D., 2018.
Evaluating CoBlox: a comparative study of robotics programming environments for
adult novices. Conf. Human Factors Comput. Syst. - Proc. 1–12. https://doi.org/
10.1145/3173574.3173940.

Weintrop, D., Holbert, N., 2017. From blocks to text and back: programming patterns in a
dual-modality environment. In: Proceedings of the Conference on Integrating
Technology into Computer Science Education, ITiCSE, pp. 633–638. https://doi.org/
10.1145/3017680.3017707.

Wolber, D., Abelson, H., Friedman, M., 2014. Democratizing computing with app
inventor. GetMobile 18, 53–58.

Yesilada, Y., Harper, S. (Eds.), 2019. Web Accessibility. A Foundation For Research.
Springer Human-Computer Interaction Series.

S. Sayago and Á. Bergantiños

https://doi.org/10.1145/1352135.1352191
https://doi.org/10.1145/1352135.1352191
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0044
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0044
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0044
https://doi.org/10.1007/s40692-018-0101-5
https://doi.org/10.1007/s40692-018-0101-5
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0046
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0046
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0046
https://doi.org/10.1002/cae.21895
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0048
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0048
https://doi.org/10.1145/2729094.2742618
https://doi.org/10.1109/VLHCC.2018.8506534
https://www.pewresearch.org/internet/2014/04/03/older-adults-and-technology-use/
https://www.pewresearch.org/internet/2014/04/03/older-adults-and-technology-use/
https://doi.org/10.1109/VLHCC.2018.8506504
https://doi.org/10.1109/VLHCC.2018.8506504
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0054
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0055
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0055
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0055
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0056
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0056
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0057
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0057
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0058
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0058
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0059
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0059
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0059
https://doi.org/10.1080/03601277.2012.703583
https://doi.org/10.1177/1555412015597108
https://doi.org/10.1177/1555412015597108
https://doi.org/10.1016/j.chb.2019.03.031
https://doi.org/10.1145/3025453.3025766
https://doi.org/10.1145/3173574.3173818
https://doi.org/10.1145/3173574.3173818
https://doi.org/10.1109/IC3e.2018.8632649
https://doi.org/10.1145/2470654.2481360
https://www.tiobe.com/tiobe-index/
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0068
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0068
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0068
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0069
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0069
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0070
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0070
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0070
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0071
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0071
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0071
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1145/2787622.2787721
https://doi.org/10.1145/3173574.3173940
https://doi.org/10.1145/3173574.3173940
https://doi.org/10.1145/3017680.3017707
https://doi.org/10.1145/3017680.3017707
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0076
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0076
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0077
http://refhub.elsevier.com/S1071-5819(20)30179-8/sbref0077

	Exploring the first experiences of computer programming of older people with low levels of formal education: A participant ...
	1 Introduction
	2 Related work
	2.1 From consumers to producers of digital content
	2.2 Computer programming with older people

	3 The case study
	3.1 The approach
	3.2 The courses
	3.3 The participants: Recruitment and profile
	3.4 Data gathering and analysis
	3.5 Ethical aspects

	4 Findings
	4.1 Motivations for programming: learning about computers, feeling more socially included and competent, and creating somet ...
	4.1.1 Commentary

	4.2 Lots of difficulties, mostly cognitive-related, with important meanings behind, related to the identity of the particip ...
	4.2.1 Commentary

	4.3 From disempowerment to empowerment: connecting coding with their lives, ‘ I feel I can do cool things now’
	4.3.1 Commentary

	4.4 Learning to read and write but not to think in abstract terms: ‘you need a brilliant mind’
	4.4.1 Commentary

	4.5 To block or not to block? ‘Stupid or quite something!’ It comes down to dealing with identity
	4.5.1 Commentary

	5 Some implications
	5.1 For better understanding older people as technology users
	5.2 For co-creating useful, user and learner-centered instructional materials in different languages and formats
	5.3 For designing better tools for programming: avoid ‘othering’ them and aim for the tasks they want to do

	6 Limitations
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

